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1. General principle of diffusive transport: random walk

2. Charge-neutrality ➔ ambipolar diffusion

3. Classical diffusion and transport in a tokamak (highly ionised, magnetised
plasma)

4. Neo-classical diffusion and transport in a tokamak (particle description)

5. Turbulent transport in tokamaks ➔ anomalous diffusion

Material

▪ See also EPFL MOOC “Plasma physics: Applications” #7d,e
• https://learning.edx.org/course/course-v1:EPFLx+PlasmaApplicationX+1T_2018/home 

▪ Wesson, Tokamaks - Third Edition, Ch. 2.4-2.6, 3.9-3.12, 4.1-4.8, 4.12-4.14, 4.17-
4.18, 8.1-8.2

Outline
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▪ Example of 1D random walk diffusion: Random walk, which starts at 0 and at 

each step moves +1 (‘heads’) or −1 (‘tails’) with equal probability

▪ Five flips: marker could now be on {1, 3, 5}

▪ Overall probability: 10(+1), 10(-1), 5(+3), 5(-3), 1(+5), 1(-5) out of 32

• Average displacement: D𝑥 = 0 (!)

• Root mean square (RMS) displacement: (D𝑥)2 = 5

▪ General: N steps with step size 𝜹𝐬𝐭𝐞𝐩 𝐥𝐞𝐚𝐝𝐬 𝐭𝐨

Classical diffusion: random walk 
determined by a coin flip

𝜟𝒙 𝟐 = 𝜹𝐬𝐭𝐞𝐩 𝑵
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=
𝛿step
2

𝜏step
𝛥𝑡

▪ Example of 2D random walk diffusion

▪ Mean squared displacement (D𝑥)2 for an ensemble of test particles is 

proportional to time D𝑡 → i.e. number of steps 𝑁

• With time between steps 𝜏step, time for N steps is Δ𝑡 = 𝑁𝜏step

Classical diffusion: random walk 
across cellular membranes

Diffusion coefficient D

⇒ 𝛥𝑥 2 = 𝛿step
2 𝑁𝛥𝑥 2 = 𝛿step 𝑁
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▪ Diffusion coefficient:  𝐷 =
𝛿step
2

𝜏step
= 𝜈step𝛿step

2

• Step frequency 𝜈step = 𝜏step
−1

• (Average) step size 𝛿step

▪ Displacement becomes only transport when there is a gradient

▪ Random walk analogy can be equally applied to heat  conduction

From displacement to transport

ത𝑞 = −𝑛𝑘𝐵𝜒𝛻𝑇

തΓ = −𝐷𝛻𝑛

Thermal conductivity k [W/(m∙K)]

Fick’s first law (of diffusion)
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▪ Continuity equation (see L2)

▪ Assume diffusive transport

▪ Estimate of confinement time: 𝜏conf ≈ Τ𝑎2 𝐷
• Characteristic system dimension a

Diffusive transport ‘closes’ the 
continuity equation

𝜕𝑛

𝜕𝑡
+ ∇ 𝑛 ∙ ത𝑉 = 𝑆

𝜕𝑛

𝜕𝑡
− ∇ 𝐷∇𝑛 = 𝑆 Diffusion equation
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▪ Movement of gas atoms A from a region of a high concentration to a 

region of low concentration

▪ Only force on particles arises from collisions

• Step frequency 𝜈 ➔ Collision frequency 𝜈𝐶
- Collisions need to exchange momentum with background gas for a diffusive 

transport of particle species A (!)

• Step-size  ➔ Mean free path  𝜆MFP = 𝜈th 𝜏C = Τ𝜈th 𝜈C

▪ Diffusion coefficient

➢ Collisions slow down diffusive transport in a gas

Diffusion in gases

𝐷GAS = 𝜈C𝜆MFP
2 = 𝜈C

𝜈th
𝜈C

2

=
𝑣th
2

𝜈C
=

𝑘B𝑇

𝑚 𝜈C
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1. General principle of diffusive transport: random walk

2. Charge-neutrality ➔ ambipolar diffusion

3. Classical diffusion and transport in a tokamak (fully ionized, 

magnetized plasma)

4. Neo-classical diffusion and transport in a tokamak (particle 
description)

5. Turbulent transport in tokamaks ➔ anomalous diffusion

Outline
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▪ Diffusion coefficient:  𝐷 = 𝜈step𝛿step
2

• Step frequency 𝜈step ➔ Collision frequency 𝜈𝐶

• (Average) step size 𝛿step ➔ Mean free path 𝜆MFP = Τ𝑣th 𝑣C

▪ In a weakly ionised plasma collisions with neutrals dominate 𝜈C = 𝜈e,i/n

• Mean free paths 𝜆MFP for electrons and ions are the same

Diffusion in a weakly ionised 
plasma

Mean free path

➢ Collision frequencies of e and i, 𝜈e,i/n= Τ𝑣th,e,i 𝜆MFP , differ
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▪ Diffusion coefficient:  𝐷 = 𝜈step𝛿step
2

• Step frequency 𝜈step ➔ Collision frequency 𝜈𝐶

• (Average) step size 𝛿step ➔ Mean free path 𝜆MFP = Τ𝑣th 𝑣C

▪ In a weakly ionised plasma collisions with neutrals dominate 𝜈C = 𝜈e,i/n

• Mean free paths 𝜆MFP for electrons and ions are the same  ➔ 𝜈e,i/n=
𝑣th,e,i

𝜆MFP

- For 𝑇𝑒 = 𝑇i,

➢ In weakly ionised plasmas electron diffusivity is greater than ion 
diffusivity

Diffusion in a weakly ionised 
plasma

𝐷e = 𝜆MFP 𝑣th,e

𝐷e
𝐷i

=
𝑣th,e
𝑣th,i

=
𝑚i

𝑚e
≫ 1

and 𝐷i = 𝜆MFP 𝑣th,i
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▪ Consider particle motion in the absence of (or parallel to) the magnetic field in 

the presence of a density gradient: 

▪ Non-ambipolar transport leads to charge separation and the creation of an 

electric field that balances the transport so that   𝑍തΓ𝑖 = തΓ𝑒 = തΓ

▪ Using Einstein’s relation Τ𝐷𝑠 𝜇𝑠 = Τ𝑘𝐵𝑇𝑠 𝑞𝑠 and   𝑇𝑒 = 𝑇i

▪ With 𝐷𝑒 ≫ 𝑍 𝐷i

Ambipolar diffusion and electric 
field

തΓ𝑖 = −𝐷𝑖𝛻𝑛𝑖 + 𝑛𝑖𝜇𝑖 ത𝐸

ത𝐸𝐴𝑃 =
𝐷𝑖 − 𝐷𝑒
𝜇𝑖 − 𝜇𝑒

𝛻𝑛

𝑛
≈
𝑘𝐵𝑇

𝑒

𝛻𝑛

𝑛
Ambipolar

electric field

തΓ𝑒 = −𝐷𝑒𝛻𝑛𝑒 + 𝑛𝑒𝜇𝑒 ത𝐸

𝐷𝐴𝑃 =
𝜇𝑖𝐷𝑒 − 𝜇𝑒𝐷𝑖
𝜇𝑖 − 𝜇𝑒

തΓ = −𝐷𝐴𝑃𝛻𝑛

𝐷𝐴𝑃 =
𝑍 + 1 𝐷𝑖𝐷𝑒
𝑍𝐷𝑖 + 𝐷𝑒

with

𝐷𝐴𝑃 ≈ 𝑍 + 1 𝐷𝑖 and

and
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➢Diffusion coefficients: 𝐷i < 𝐷AP < 𝐷e ➔ ത𝐸AP slows down the electrons and 

increases ion diffusion by a factor 1+Zi  2

Ambipolar diffusion and electric 
field

ത𝐸𝐴𝑃 =
𝐷𝑖 − 𝐷𝑒
𝜇𝑖 − 𝜇𝑒

𝛻𝑛

𝑛
≈
𝑘𝐵𝑇

𝑒

𝛻𝑛

𝑛
𝐷𝐴𝑃 ≈ 𝑍 + 1 𝐷𝑖 and
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1. General principle of diffusive transport: random walk

2. Charge-neutrality ➔ ambipolar diffusion

3. Classical diffusion and transport in a tokamak (highly ionised, 

magnetised plasma)

4. Neo-classical diffusion and transport in a tokamak (particle 
description)

5. Turbulent transport in tokamaks ➔ anomalous diffusion

Outline
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Momentum transfer

• Electron-ion collisions

• Electron-electron collisions

• Ion-ion collisions

• Ion-electron collisions

Reminder: Coulomb collisions in a highly 
ionised thermal plasma (Plasma I)

𝜈p
e/i

=
1

3

2

𝜋
𝑛i

𝑍2𝑒4ln Λ

4𝜋𝜀0
2𝑚𝑒

Τ1 2

1

𝑘B𝑇e
Τ3 2

𝜈p
e/e

=
1

2
𝜈p
e/i

𝜈p
i/e

=
𝑛e𝑚e

𝑛i 𝑚i
𝜈p
e/i

𝜈p
i/i
=

1

2

𝑚e

𝑚i

𝑇e
𝑇i

Τ3 2

𝜈p
e/i

Energy transfer

𝜈E
e/i

= 2
𝑚e

𝑚i
𝜈p
e/i

𝜈E
e/e

= 𝜈p
e/e

𝜈E
i/i
= 𝜈p

i/i

𝜈E
i/e

= 2𝜈p
i/e

≅ 𝜈E
e/i

~O(1)

~
𝟏

𝟏𝟖𝟑𝟔

~
𝟏

𝟒𝟑

~1

~
𝟏

𝟒𝟑

~
𝟏

𝟏𝟖𝟑𝟔

~
𝟏

𝟏𝟖𝟑𝟔~O(1)
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▪ Step-size

• Ions: 𝜆MFP,i = Τ𝑣th,i 𝜈i

• Electrons: 𝜆MFP,e = Τ𝑣th,e 𝜈e

▪ Collision frequencies

▪ Collisions among particles of same species contribute to heat, but not particle transport

Classical picture of diffusion along the 
magnetic field* in a highly ionised plasma

𝜒||
i ≈ ൗ𝑣th,i

2 𝜈E
i/i
+ 𝜈E

i/e

Electrons: 

Ions: 

decreases with collisionality!

Momentum Energy

e-i [𝜈p
e/i

] 1 ~ Τ𝑚e 𝑚i

e-e [𝜈p
e/i

] ~1 ~1

i-i [𝜈p
e/i

] ~ Τ𝑚e 𝑚i ~ Τ𝑚e 𝑚i

i-e [𝜈p
e/i

] ~ Τ𝑚e 𝑚i ~ Τ𝑚e 𝑚i

𝐷||
e ≈ ൗ𝑣th,e

2 𝜈p
e/i

𝐷||
i ≈ ൗ𝑣th,i

2 𝜈p
i/e

~𝐷||
e

< 𝜈E
i/i

𝜒||
e ≈ ൗ𝑣th,e

2 𝜈E
e/e

+ 𝜈E
e/i

< 𝜒||
e

< 𝜈E
e/e

𝐷|| =
𝑣th
2

𝜈

*Or in an un-magnetised plasma
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▪ Step-size (magnetised plasma!)

• Ions: 𝜌𝐿𝑖 = ൗ2𝑚𝑖𝑇𝑖 𝑍𝑒𝐵

• Electrons: 𝜌𝐿𝑒 = ൗ2𝑚𝑒𝑇𝑒 𝑒𝐵

▪ Collision frequencies

▪ Collisions among particles of same species contribute to heat, but not particle transport

Classical picture of diffusion across magnetic 
field lines in a highly ionised plasma

𝜒⊥
e ≈ 𝜈E

e/e
+ 𝜈E

e/i
𝜌L,e
2

𝜒⊥
i ≈ 𝜈E

i/i
+ 𝜈E

i/e
𝜌L,i
2

𝐷⊥
e ≈ 𝜈p

e/i
𝜌L,e
2

< 𝜈E
e/e

𝐷⊥
i ≈ 𝜈p

i/e
𝜌L,i
2 ~𝐷⊥

e/i

< 𝜈E
i/i

> 𝜒⊥
e

increases with collisionality!𝐷⊥ = 𝜈𝜌L
2

Momentum Energy

e-i [𝜈p
e/i

] 1 ~ Τ𝑚e 𝑚i

e-e [𝜈p
e/i

] ~1 ~1

i-i [𝜈p
e/i

] ~ Τ𝑚e 𝑚i ~ Τ𝑚e 𝑚i

i-e [𝜈p
e/i

] ~ Τ𝑚e 𝑚i ~ Τ𝑚e 𝑚i

Electrons: 

Ions: 
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Overview of classical heat 
transport

Compare parallel and perpendicular heat transport in fusion plasmas
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▪ For ions and electrons in thermal equilibrium (𝑇𝑒 = 𝑇𝑖) the classical 

perpendicular diffusion coefficients are 

𝐷⊥,i ≈ 𝜈p
i/e
𝜌L,i
2 = 𝜈p

i/e 𝑚i𝑇

𝑒𝐵 2 = 𝜈p
e/𝑖 𝑚e𝑇

𝑒𝐵 2 = 𝜈p
e/i

𝜌L,e
2 ≈ 𝐷⊥,e

➢Cross-field diffusion is automatically ambipolar and there is no need for an 
electric field to maintain charge neutrality (also parallel!)

▪ 𝐷⊥ ∝ Τ𝑛 𝐵2 𝑇 , thus increasing the magnetic field reduces the 

classical cross-field diffusion

▪ Τ𝐷|| 𝐷⊥ = ΤΩe 𝜈p
e/i 2

1016 for typical fusion plasmas (similar for e and i)

➢Parallel diffusion is much faster than the perpendicular diffusion

• While 𝐷⊥ increases with density, 𝐷|| ∝ Τ𝑇 Τ5 2 𝑛 is reduced at higher density

Overview of classical particle 
transport
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1. General principle of diffusive transport: random walk

2. Charge-neutrality ➔ ambipolar diffusion

3. Classical diffusion and transport in a tokamak (highly ionised, 

magnetised plasma)

4. Neo-classical diffusion and transport in a tokamak (particle 
description)

5. Turbulent transport in tokamaks ➔ anomalous diffusion

Outline
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▪ Inhomogeneous magnetic field in a toroidal configurations results in 

drifts and magnetic mirrors (→ see E3-1)

Neoclassical diffusion in a tokamak

➢ Distinguish between trapped and passing particles

- Condition for trapping in the magnetic 

mirror

𝑣||
2

𝑣2
< 1−

𝐵𝑚𝑖𝑛

𝐵𝑚𝑎𝑥
= 1−

𝑅0 − 𝑟

𝑅0 + 𝑟
≈ 2

𝑟

𝑅0

[J.P. Freidberg, PP and FE, Fig. 14.11]

- Condition applies to 2𝜀 of all particles 

➔ trapped particle fraction
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▪ Toroidal drifts ➔ trapped 

particles follow ‘banana’ orbits

• Note that bananas also 
precess in the toroidal direction

Neoclassical diffusion in a tokamak

➢ Drifts can affect transport, if particle can move through entire orbits 

before colliding

→ Orbit transit time 𝜏TR~ Τ𝑞𝑅 𝑣∥ < 𝜏coll
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▪ Passing orbit follows flux surface continuously around the torus

• Orbit displaced by 𝛿DRIFT ≈ 𝑞𝜌L
• Effective collision frequency 

𝜈𝑒𝑓𝑓 = Τ𝜈 𝜀

▪ Diffusion coefficient

• Compare

𝐷𝑃𝐴𝑆𝑆 = 1 − 2𝜀
𝑞2

𝜀
𝐷⊥,𝐶𝐿𝐴𝑆𝑆 ⇒

Neoclassical diffusion in a tokamak: 
passing orbits

= 1 − 2𝜀
𝑞2

𝜀
𝜌𝐿
2 𝜈Passing particle

fraction
𝐷⊥,𝐶𝐿𝐴𝑆𝑆

𝑟 → 0: 𝐷𝑃𝐴𝑆𝑆 𝑟 ≈
𝑞2 𝑟

𝜀 𝑟
𝐷⊥,𝐶𝐿𝐴𝑆𝑆 𝑟

𝑟 → 𝑎: 𝐷𝑃𝐴𝑆𝑆 𝑟 ≈ 𝑞2 𝑟 𝐷⊥,𝐶𝐿𝐴𝑆𝑆 𝑟

𝐷𝑃𝐴𝑆𝑆 = 1 − 2𝜀 𝜈𝑒𝑓𝑓 𝛿DRIFT
2
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- Orbit width:  𝛿𝐵𝐴𝑁 ≈ Τ𝑞𝜌L 𝜀

- Effective collision frequency:  

𝜈𝑒𝑓𝑓 = Τ𝜈 𝜀

▪ Diffusion coefficient

▪ Trapped banana orbit sits on LFS of flux surface

Neoclassical diffusion in a tokamak: 
banana orbits

𝐷𝐵𝐴𝑁 = 2𝜀 𝜈𝑒𝑓𝑓 𝛿𝐵𝐴𝑁
2 =

2𝑞2

𝜀 Τ3 2
𝜈 𝜌𝐿

2

Trapped particle fraction

- Compare

𝐷𝐵𝐴𝑁 𝑟 ≈
2/𝜀 𝑟

1 − 2𝜀 𝑟
𝐷𝑃𝐴𝑆𝑆 𝑟

𝐷𝐵𝐴𝑁 𝑟 ≈

2/𝜀 𝑟 𝐷𝑃𝐴𝑆𝑆 𝑟 > 𝐷𝑃𝐴𝑆𝑆 𝑟

2 𝑞2 𝑟

𝜀3/2 𝑟
𝐷⊥,𝐶𝐿𝐴𝑆𝑆 𝑟 ≫ 𝐷⊥,𝐶𝐿𝐴𝑆𝑆 𝑟
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▪ Time for a poloidal revolution

▪ Perpendicular drift (curvature and ∇B)

▪ Diffusion coefficient 𝐷PS

• Compare

▪ Pfirsch-Schlüter transport: short mean free path limit 𝜆MFP ≪ 𝑅𝑞
• Even passing particles do not complete a full orbit

• Parallel diffusion with 𝐷|| = 𝜈𝑐𝜆MFP
2 =

𝑣𝑡ℎ
2

𝜈𝑐

Neoclassical diffusion in a tokamak: 
Pfirsch-Schlüter regime

𝜏𝑝𝑜𝑙 =
𝑅𝑞 2

𝐷||
=

𝑅𝑞 2

𝑣𝑡ℎ
2 𝜈𝑐

𝑣𝐷𝑟𝑖𝑓𝑡~𝑣𝑡ℎ
𝜌𝐿
𝑅

𝐷PS =
𝑣𝐷𝑟𝑖𝑓𝑡𝜏𝑝𝑜𝑙

2

𝜏𝑝𝑜𝑙
~𝑞2𝜈𝑐 𝜌𝐿

2

𝐷𝑃𝑆 = 𝑞2𝐷⊥,𝐶𝐿𝐴𝑆𝑆 ≫ 𝐷⊥,𝐶𝐿𝐴𝑆𝑆
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▪ Scaling of the perpendicular diffusion coefficient D⊥ as function of the 

collision frequency 𝜈𝑃
𝑒/𝑖

for momentum transfer between ions and electrons 

in different regimes of collisionality

Neoclassical diffusion in a tokamak: 
collisionality dependence

Time between effective 

collisions > time to sufficient to 

bounce in the mirror

Number of collisions for 

each poloidal transit

𝐷𝑃𝑆 ≈ 𝑞2 𝐷⊥,𝐶𝐿𝐴𝑆𝑆

Normalised collisionality

𝐷⊥,𝐶𝐿𝐴𝑆𝑆 = 𝜈𝑃
𝑒/𝑖

𝜌𝐿,𝑒
2

𝜏TR𝜈𝑃
𝑒/𝑖

𝐷𝐵𝐴𝑁 =
2𝑞2

𝜀 Τ3 2 𝐷⊥,𝐶𝐿𝐴𝑆𝑆

𝐷𝑃𝐿 ≈
𝑣𝑡ℎ
𝑞𝑅

𝑞2𝜌𝐿,𝑖
2
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▪ Typically 𝐷⊥,NEO ≈ 25− 60 × 𝐷⊥,CLASS

▪ JET case (see Exercise 2)

• 𝐷⊥,CLASS ≈ 5 × 10−5 Τ𝑚2 𝑠

• 𝐷⊥,NEO ≈ 1 − 5 × 10−3 Τ𝑚2 𝑠

▪ However: measured diffusion typically 𝐷⊥,meas ≈ Τ𝑎2 𝜏𝐸 ≈1 Τ𝑚2 𝑠 → still 

much larger than 𝐷⊥,NEO!

➢Must consider anomalous diffusion

Neoclassical diffusion in a tokamak: 
typical numbers
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Classical diffusion

▪ Tokamak approximated by a straight 

cylinder ➔ absence of magnetic field 

curvature

▪ Particle orbits = Larmor orbits

▪ Classical diffusion coefficient:

D⊥,CLASS ~ 𝜈p
e/i
𝜌L,e
2

Classical vs. neo-classical diffusion 
in a tokamak

Neo-classical diffusion

▪ Tokamak as a toroidal device ➔

magnetic field curvature becomes 

important

▪ Particle orbits: more complex than 
simple Larmor orbits

▪ Neo-classical diffusion coefficient: 

D⊥,NEO(r) ~ q2/D⊥,CLASS

•  depends on relevant orbit, i.e. regime 
(Banana, plateau, Pfirsch-Schlüter)

- D⊥,CLASS  510-5m2/s 

- D⊥,NEO  (1-5)10-3m2/s

- But D⊥,meas  1m2/s still ≫ D⊥,NEO ➔ Diffusion is anomalous!

JET:
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1. General principle of diffusive transport: random walk

2. Charge-neutrality ➔ ambipolar diffusion

3. Classical diffusion and transport in a tokamak (highly ionised, 

magnetised plasma)

4. Neo-classical diffusion and transport in a tokamak (particle 
description)

5. Turbulent transport in a tokamak ➔ anomalous diffusion

Outline
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▪ Electrostatic (ES) fluctuations: 𝛿𝐸𝜃 = −∇𝜃𝜙 produce an ത𝐸 × ത𝐵 drift 
velocity 𝛿𝑣𝑟 = Τ𝛿𝐸𝜃 𝐵0

• Lead to a convective flux

𝛿ΓES = 𝛿𝑣𝑟𝛿𝑛 =
1

𝐵0
∇𝜃𝜙𝛿𝑛

• 𝛿ΓES vanishes, if the turbulent fields n and 𝜙 are exactly in-phase

• Various effects can introduce a phase shift and, hence finite 𝛿ΓES

▪ Electromagnetic (EM) fluctuations: 𝛿𝐵r produce a convective particle 
flux 

𝛿ΓEM =
𝑛0
𝐵0

𝛿𝑣||𝛿𝐵r

▪ The instabilities causing ES and/or EM turbulent fluctuations typically 
occur over a scale length comparable to a few ion Larmor radii: micro-
instabilities

Turbulent fluctuations and 
diffusion
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▪ Electric potential in a JET plasma turbulence simulation

Modelling anomalous diffusion
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▪ L-mode: basic low-confinement 

regime ➔ D⊥,meas500D⊥,NEO

Anomalous diffusion and transport 
barriers

▪ Reduce diffusion at plasma edge: 

H-mode ➔ edge transport barrier: 

D⊥,meas5D⊥,NEO

▪ Reduce diffusion in plasma core: 

advanced scenario with internal 

transport barrier (ITB regime) ➔

D⊥,meas2D⊥,NEO
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▪ Electric potential in a JET plasma turbulence simulation 

• Reproduce plasma states without (left) and with (right) an Internal Transport 
Barrier (ITB)

Modelling anomalous diffusion
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▪ Pending a first principle theory of 

turbulent transport next steps such 

as ITER are planned based on 

empiric power scaling laws

The alternative: an empirical 
approach

- Typically based on engineering 

parameters, e.g. IPB98(y)

[E. Doyle, et al, Nucl. Fusion (1999)]

ITER!

𝜏E,th
ELMy

= 0.0365 𝐼P
0.97𝐵T

0.08 𝑃−0.63 𝑛0.41

× 𝑀0.20𝑅1.93𝜀0.23𝜅0.67
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▪ Experimentally observed transport exceeds neo-classical transport by 

several orders of magnitude → anomalous transport

▪ Anomalous diffusion due to

• Perturbations that allow transport across nested magnetic flux surfaces →
electro-static turbulence

• Perturbations that break-up nested magnetic surfaces allowing particles and 
energy to flow along newly formed field lines which follow stochastic 
trajectories → electro-magnetic turbulence

▪ Suppression of turbulent transport locally increases gradients →

transport barriers

▪ Simulations of turbulent transport capable of reproducing observations

Turbulent transport: Summary 
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